National Technical University of Athens
School of Chemical Engineering
Department of Materials Science and Engineering
Computational Materials Science and Engineering Group (Co.M.S.E.)
 
 
 
 
News

16-July-2018
Master thesis presentation: On the 17th of July 2018, Panagiotis Petris will present his Master Thesis, entitled "Thermodynamic Analysis of n-Hexane/Ethanol Binary Mixtures Using Kirkwood-Buff Theory" in front of his three-member examination committee. The presentation will take place in the "Nikos Koumoutsos" hall of the Chemical Engineering building at 16:00.
Click here for an abstract of the presentation!

29-June-2018
During July 2-5, the following group members: Aikaterini Galata, Nikolaos Evaggelou, Matrona Panou, Vasilios Papasimakopoulos and Evaggelos Konialidis, will defend their Diploma Thesis. Details regarding the presentations can be found in the news section.

13-June-2018
This Monday, 17th of June 2018, David will celebrate with us his 30+ birthday around 4 pm! Let's all be there!
(free cake/sweets will be served!!!)

18-May-2018
Next Thursday, 24th of May 2018, at 13:00, we will hold our group meeting in "Nikos Koumoutsos" room. Dr. David Nieto Simavilla will present his work "Changes in the thermal properties of polymeric materials induced by molecular orientation: Experimental methods, current understanding and strategies for the application to numerical methods".
Click here to download the abstract of the presentation.

15-May-2018
Warmest congratulations to our former group member and collaborator, Dr. Georgios Vogiatzis for receiving the EΛETY-GRACM Ph.D Award for the best thesis of the year 2015!
The award will be bestowed at the opening ceremony of the 9th GRACM 2018 International Congress on Computational Mechanics on 4-6 June at Chania, Crete.

4-May-2018
Next Thursday, 10th of May 2018, at 13:00, we will hold our group meeting in "Nikos Koumoutsos" room. Aikaterini Galata will present her recent work "Thermodynamic Analysis of Lennard-Jones Binary Mixtures Using Kirkwood-Buff Theory".
Click here to download the abstract of the presentation.

24-April-2018
Diploma thesis presentation: On the 30th of April 2018, Dora Argyropoulou will present her Diploma Thesis, entitled "Computational Study of the Effects of Tacticity on the Conformational Properties of Unperturbed Chains of Polypropylene Homopolymers and Ethylene-Propylene Copolymers" in front of her three-member examination committee. The presentation will take place in the "Nikos Koumoutsos" hall of the Chemical Engineering building at 13:00.
Click here for an abstract of the presentation!

5-April-2018
On the 27th of March 2018, Prof. Doros N. Theodorou, Ph.D. received the honor at DFYP 2018, the international conference on Deformation, Yield, and Fracture of Polymers, in Kerkrade, the Netherlands!
For more details go to the News section or to the official source!

16-March-2018
Ph.D. thesis presentation: On the 19th of March 2018, Orestis George Ziogos will present his Ph.D. Thesis, entitled "Multiscale Simulations of Discotic Materials" in front of his seven-member examination committee. The presentation will take place in the "Nikos Koumoutsos" hall of the Chemical Engineering building at 12:00.
Click here for an abstract of the talk




Read all news...
Multiscale Simulation of Liquid-Crystals, Polymer Melts and Rubbers

Multiscale modeling is a valuable tool for the study of phenomena taking place at different time and length scales and is able to contribute complementary information to experiments and theories. Liquid crystals exhibit a number of intermediate phases between the isotropic and crystalline ones. From a general point of view, they can be divided into thermotropic and lyotropic liquid-crystals, depending on whether the liquid-crystalline phase appears due to a change of temperature or in the concentration of a solvent, respectively. The first category contains either rod-like or disk-shaped molecules, whereas the second category includes at least two-component systems, such as lipid bilayers (e.g DPPC membrane). Both thermotropic and lyotropic liquid crystals are included in the research interests of COMSE group. We simulate these systems at atomistic and mesoscopic levels, paying special attention to the coarse-graining procedure, which is based on a systematic method (e.g Iterative Boltzmann Inversion or Force Matching). After the development of reliable mesoscopic models, we study structural, dynamical and thermodynamic properties. In the area of lipid bilayers, interactions with other molecules (e.g drugs) are of tremendous importance. Our group is conducting both molecular dynamics simulations and umbrella sampling simulations by employing the wham algorithm. Another area of research is the computation of rheological properties of polymer melts and mechanical properties of rubbers. Due to the nature of polymeric systems, atomistic simulations are not able to cover the needed time and length scales and therefore we have to resort to appropriate mesoscopic models. One approach is to use Brownian dynamics, while the entanglement effect is introduced through hopping/creation/destruction of slip-springs based on a kinetic Monte Carlo scheme. In order to simulate uniaxial elongation of rubbers, a deformation scheme has been developed, based on imposing the strain and Poisson's ratio and measuring the stresses along the elongation direction. The stress-strain curve of the simulated material is obtained from this procedure and the elastic modulus (E) is computed from the slope of the linear region of this curve.


Figure 1: Snapshot from a molecular dynamics simulation of a discotic liquid crystal at mesoscopic level.


Figure 2: Reverse mapping of a discotic liquid crystal from the coarse-grained to atomistic level.

(a) (b)

Figure 3: (a) Schematic representation of a hydrated lipid bilayer containing one drug molecule. (b) Potential of mean force for a drug along a selected reaction coordinate of the lipid bilayer using the wham algorithm. (figure provided by Grigorios Megariotis in the context of the publication: Fotakis, C.; Megariotis, G.; Christodouleas, D.; Kristi, E.; Zoumpoulakis, P.; Ntoutaniotis, D.; Zervou, M.; Potamitis, C.; Hodzic, A.; Pabst, G.; Rappolt, M.; Mali, G.; Baldus, J.; Glaubitz, C.; Papadopoulos, M. G.; Afantitis, A.; Melagraki, G.; Mavromoustakos, T. Biochimica et Biophysica Acta-Biomembranes 2012, 1818, 3107.[REF])


Figure 4: (a) Visualisation of a simulation box containing polymeric chains at the level of Kuhn segments (obtained from Field Theory Inspired Monte Carlo simulation). (b) Visualization of the simulation box containing polymeric chains at the level of beads, each bead consisting of a predefined number of Kuhn segments (coarse-graining of (a)).

(a) (b)

Figure 5: (a) Stress relaxation function of a cis-1,4 polyisoprene melt computed by a Brownian dynamics simulation coupled with a kinetic Monte Carlo scheme for the hopping of slip-springs (used for the inclusion of entanglement effect). (b) Loss and storage moduli computed by a Fourier Transform of the stress relaxation function.


Figure 6: Stress-strain curve of a rubber under uniaxial elongation.

Relevant publications

[1] Megariotis, G.; Vyrkou A.; Leygue, A.; Theodorou D. N. "Systematic Coarse Graining of 4-Cyano-4'-pentylbiphenyl" Ind. Eng. Chem. Res. 2011, 50, 546.
http://dx.doi.org/10.1021/ie901957r
[2] Vogiatzis, G.G.; Megariotis, G.; Theodorou, D.N. "Equation of State Based Slip Spring Model for Entangled Polymer Dynamics" Macromolecules 2017, 50, 3004-3029.
http://dx.doi.org/10.1021/acs.macromol.6b01705
[3] Sgouros, A.P.; Megariotis, G.; Theodorou, D.N. "Slip-Spring Model for the Linear and Nonlinear Viscoelastic Properties of Molten Polyethylene Derived from Atomistic Simulations" Macromolecules 2017, 50, 4524-4541.
http://dx.doi.org/10.1021/acs.macromol.7b00694

Relevant projects

[1] EU META-ASSEMBLY, Self-Assembly and Dynamics in Metastable States. From Molecular and Supramolecular to Mesoscopic Systems.
http://excellence.minedu.gov.gr/thales/en/thalesprojects/379436
[2] Mesoscopic Simulations of Viscoelastic Properties of Networks.
http://www.volkswagenstiftung.de/en/funding/information-for-grant-recipients/support-for-europe/grants-2013.html
[3] EU MNIBS, Multiscale Modeling of Nanostructured Interfaces for Biological Sensors.
http://cordis.europa.eu/project/rcn/79822_en.html
[2] "Multiscale Simulations of Complex Polymer Systems" (MuSiComPS), Limmat Foundation, Zurich, Switzerland.